SEO知识:流量预测算法

演绎法预测

如题,谁知道呀。


演绎法能耗预测主要采用工艺仿真的方式进行,而工艺仿真的技术难点主要是敏感性分析和影响条件的简化。这里,需要强调的是工艺仿真系统的建模和调试不是简单的纠偏,而是要发现影响因素,剖析规律,研究其影响的权重。

一般输油泵机组耗电、加热炉耗油(气)和压缩机组耗能可采用模拟法测算。测算工具包括模拟软件与相关公式,建立步骤如下[10]

第一,数据收集。

管道基础数据:

——管径,壁厚,管道高程、里程(含站场、阀室位置),管道最高承压,摩阻系数;

——沿线土壤四季不同地温、传热半径、土壤导热系数;

——输油站泵机组参数,包括:泵类型、性能曲线、功率、效率、开机/停机时间、额定转速、额定排量、运行方式(串联、并联)等;

——压气站压缩机组参数,包括:压缩机类型(离心式、往复式)、性能曲线、功率、温升比率、效率、开机/停机时间、驱动方式(电驱、燃驱)、最低进口压力、额定转速、压缩机配置方式(几用几备)、运行方式(串联、并联)等;

——加热炉参数,包括加热炉额定负荷、效率等;

——输送介质物性,原油密度、比热容、凝点、黏温曲线,天然气组分及其组成百分比,成品油密度、比热容等。

管线运行数据依据所制订方案而定,参数选取应符合调度手册和交接协议的相关规定。

第二,数据录入。

按照相关测算软件或公式的要求,对收集的数据进行整理、筛选、分析后翔实录入,以保证测算结果的可靠性。

第三,精度调整。

测算软件或公式初步形成后,应利用多组历史运行数据进行反复校核调整,以达到准确测算的要求。

按月度计划输量编制运行方案,并选择相应月份下的沿线地温,在模型中各站进出站主要参数符合调度操作手册要求的前提下,算出一组稳定的工况,得到不同月份内全线各站的耗油/气/电总量;当只有年计划输量的情况下,根据前三年的月不均匀系数编制分月运行方案,并选择相应月份下的沿线地温,在模型中各站进出站主要参数符合调度操作手册要求的前提下,算出一组稳定的工况,得到不同月份内全线各站的耗油/气/电总量。根据测算出的月度数值进行累加,形成全年耗油/气/电总量。

下面以原油管道能耗预测为例,阐述演绎法能耗预测相关要点。

1.原油管道最优能耗预测基本思路

(1)预测对象

直接预测对象:最优月耗电量;最优月耗油(气)量。

间接预测对象:管道月综合能耗(tce或MJ);管道月平均单位周转量耗电量、耗油(气)量;管道月平均单位周转量综合能耗(kgce/104t·km或kJ/104t·km);年耗电量、年耗油(气)量,按直接预测的1~12月的月耗电量、月耗油(气)量累加计算;年综合能耗量,按年耗电量、年耗油(气)量折算;该原油管道年平均单位周转量耗电量、耗油(气)量,按年耗电量、年耗(油)气量除以相应的年度总输油周转量得到;年平均单位周转量综合能耗(kgce/104t·km或kJ/104t·km),按年平均单位周转量耗电量、耗油(气)量折算。

(2)预测范围

时段选择:一般情况下预测目标时段的最终目标为指定月份,如需要,预测过程中要将一个月分解为若干不同稳态工况下的时间段。

能效指标选择:单条原油管道,直接生产能耗和单位周转量生产能耗。

这里需要说明的是,辅助生产能耗、生活能耗、输送损耗可以按相关规范(定)定额计算,并不参与正算法能耗预测计算,只是在最终合计数据时并入能源消耗量和单位周转量综合能耗。

(3)预测的前提条件

基本输入:原油品种、原油输入点进油量、原油输出点交油量。

基础资料:K值、摩阻修正系数、泵效、炉效,设备特性曲线等。

(4)预测算法

工艺计算法(正算法)最优化算法,即在现有条件下,基于对预测月份进行流量分配方案和工艺运行方案优化,得到相对最低(优)能耗、能效的分析逻辑和数学模型。数学模型包括预测的具体方法及配套的数学模型。

模型需考虑定流量运行方案优化、月份流量分配、月份批次计划对能耗的影响、非稳态因素对能耗的影响等部分。建立预测月份流量分配优化及运行方案优化的目标函数。在预测模型中考虑的各种可选前提条件:综合能耗最低、能耗费用最低。预测月份流量分配模式主要有:平均流量、频率分配、最优流量组合、指定流量组合等方式。多种测算模式可以得到多个最优能耗测算值,所构成的区间可以提供更多最优能耗信息。

定流量稳态运行方案优化模式,指定各管段的输油流量:①理想匹配是不考虑节流;②开泵方案优化;③指定开泵方案。

热油管道定流量稳态运行输油温度设定模式:①指定输油温度(出站/进站温度);②自动设定进站温度为允许最低进站温度;③输油温度优化。

基于能耗预测的原油管道分类:①不设加热站的单一品种输送管道;②不设加热站的多品种顺序输送管道;③设加热站的单一品种输送管道;④设加热站的多品种顺序输送管道。

几种原油按一定比例混合,混合原油视为一种单一原油。针对每种类型原油管道分别建立具有较强通用性的最优能耗预测模型。基于每种类型原油管道,分别开发具有较强通用性的最优能耗预测软件。

(5)基本步骤(图7-1)

图7-1

2.能耗测算数学模型

(1)稳态优化能耗测算数学模型

决策变量的选取。全线泵组合和出站油温。

目标函数。管道系统单位时间内运行总能耗(kgce)最低。

S=SF+SE

当管线为不加热输送时,SF为零。

约束条件。①全线泵组合与管路的匹配约束。各泵站提供的有效扬程之和等于全线总摩阻损失与位差之和。②站间管段水力条件约束。③站间管段热力条件约束。④泵站约束。⑤热站约束。

(2)输量分配模型

流量在输油周期内波动相对频繁,事先无法准确预知,同时该因素对热能消耗和电能消耗有较大影响。

重点研究每月周期内,日输量的波动规律。

月任务输量分配方法如下:①平均流量法。月输油任务平均分配到日,定流量稳态优化计算日能耗,日能耗累加得到月总输油能耗,平均流量可能导致泵管匹配状况不佳,平均流量可能导致泵效低,适用于满负荷或流量稳定的管道。②频率分配法。对于不满负荷运行的原油管道,由于各种内外部条件限制,测算月份的管道日输量可能是波动的,难以预先确定测算月份每天的日输量。基于历史数据,统计一个月内,日输量/月输量百分比的分布频率。根据统计频率,确定测算月份的日输量分配。一般不同月份的日输量波动情况有所不同,一般按月统计日输量分布。③最优流量组合法。将月任务输量平均分配到每一天,在其所对应的日输量下运行有可能泵管匹配不好,例如节流比较大或者泵的运行效率比较低,因此该流量对应的能耗值比较大。拟定若干备选的流量,通过优化的方法确定最佳的流量搭配方案。④指定流量组合法。根据管道特点,指定几个流量,确定每个流量的运行时间,在预测具体管道的月输油能耗时,可以根据需要采用不同的输量分配方法,调用不同的输量分配方法将得到不同的能耗指标,将这些能耗指标构成的区间,作为最优能耗区间。

3.能耗测算软件计算逻辑

正算法的技术路线是利用现有仿真技术及管道模型研发“正算法”能耗预测软件(图7-2)。经研究分析,“ 正算法”能耗预测软件开发建议采用基于SPS等仿真技术进行二次开发的技术路线。

图7-2 能耗测算软件计算逻辑图

预测模块应实现根据月度、年度输量计划给定的输量,自动生成开机输送方案,并预测不同方案的能耗,对油气管道能耗进行自动预测;要具备对燃料费、动力费用预测的功能。

预测模块内部应包括“方案自动生成子模块”、“ 能耗指标折算子模块”、“ 逻辑判断子模块”等三个功能子模块。“方案自动生成子模块”、“能耗指标折算子模块”、“逻辑判断子模块”等三个功能子模块应通过通信协议与SPS仿真软件联动,实现自动预测能耗的逻辑过程。开发“方案自动生成子模块”,将压缩机机组、泵机组、加热炉的开机方案,作为此子模块的主要输出信息,按照一定的算法,自动生成若干开机方案。开发“能耗指标折算子模块”,将耗能量及能耗指标作为此子模块的主要输出信息。开发“逻辑判断子模块”,根据SPS仿真软件输出的管输介质输量、压力、温度以及耗能设备功率、转速、负荷等数据,和“能耗指标折算子模块”输出的耗能量及能耗指标,按照既定逻辑判断是否需要继续试,并给出优先挑选哪一类方案进行试算的指向性输出信息。

正算法所实现的能耗预测软件是离线的,即不以实时的SCADA数据作为数据来源进行业务过程的修正。基于“正算法”的能耗预测软件,应以油气管道离线水力、热力仿真计算软件为基础进行开发。能耗预测模块,应实现对天然气管网、成品油管道、原油管道的能耗预测。

4.能耗测算算例

以某管道为例:该管道有5个泵站,每个泵站均只开启1台泵。

第一步:通过用户输入界面,输入管道输送方案,即管道输量及下游各分输站分输量或注入量。

第二步:得到开机方案的全集,暂时不考虑管道水力热力条件,将5个泵站所有的排列组合全部进行罗列,如表7-1所示,假设每站开启1台机,则本例则包括31种开机方式。这31种开机方式中,肯定包括若干个满足用户所输入的分输方案的开机方案,且肯定包括1个或几个相对最优方案。接下来要对这些方案进行筛选。

表7-1 开机方案全集列表

第三步:对全集做初步筛选,筛选出若干个满足用户输入的输送方案的开机方案,筛选方法采用用户根据经验事先设定筛选条件及二分法等多种方法相结合的方式,软件要提供开放的人工设定窗口,如设定液体管道首站必须启泵,则全集方案中所有首站未启泵的方案将被全部排除;或在设定某输量台阶必须至少开启3个站,则全集方案中所有低于3站的方案也被排除;若某管道未经人为设定过,则直接采用二分法进行方案筛选。

假设本例已设定首站必须启泵,则筛选过程如下:

1)按人为设定筛选条件优先的方式,筛选出所有首站未启机的方案,经此步筛选过后,由31种开机组合方式减少为16种组合方式,如表7-2所示:

表7-2 第一次筛选后开机方案列表

2)采用二分法进行筛选,从中间的方案(序号为8的方案)开始计算。如果方案8可以满足输送要求,则排除开机方案1~7,保留开机方案8~16,如表7-3所示:

表7-3 第二次筛选后开机方案列表

3)再次利用二分法进行筛选,在剩余的开机方案中,选择中间的方案(9/2取整,即序号为5的方案)开始计算,如果开机方案5满足输送要求,则排除开机方案6~9,保留开机方案1~5,如表7-4所示:

表7-4 第三次筛选后开机方案列表

4)循环上述计算过程,当开机方案所剩达到足够少时,依次带入SPS仿真系统,进行模拟仿真,计算能耗。

第四步:针对得到的N种可行的开机方案,结合调度手册的控制原则,生成Intran控制脚本文件或其他格式的文件。Intran文件的控制逻辑,应与控制中心的调度操作手册的控制原则相吻合。例如:某台泵的入口压力达到1MPa的时候,才可以开启该台泵。以控制SPS模型进行仿真。

第五步:SPS进行模拟仿真。

第六步:通过能耗指标折算模块,换算各种开机方案下的耗气量、耗电量、耗油量、电单耗、气单耗、油单耗、生产单耗、耗能数量比等能耗指标。

第七步:逻辑判断子模块根据SPS仿真软件输出的管输介质输量、压力、温度以及耗能设备功率、转速、负荷等数据,和“能耗指标折算子模块”输出的耗能量及能耗指标,按照既定逻辑判断是否需要继续试,并给出优先挑选哪一类方案进行试算的指向性输出信息。

第八步:输出N种开机方案的能耗和周转量。

文章发布时间与标签:

更新时间:2020-12-04 04:02:55
标签: 交通流量预测算法 流量算法 流量的算法 最大流量算法

推荐的SEO知识: